ACESSO ABERTO

Data de Recebimento: 13/10/2025

Data de Aceite: 31/10/2025

Data de Publicação: 06/11/2025

*Autor correspondente:

Keyla Emanuelle Ramos de Holanda, Doutora, Av. General Rodrigo Octávio Jordão Ramos, 1200 - Coroado I, Manaus - AM, 69067-005. Telefone: (92) 98249-0374

E-mai: keylaramos@ufam.edu.br

Citação:

NASCIMENTO, K.K.M;

et al, Desenvolvimento e caracterização de Nano-amidos e suas aplicações em emulsões alimentícias pickering: uma

Revista Multidisciplinar em Saúde, v. 6, n. 4, 2025. https:// doi org/10.51161/integrar/ rems/4703

DOI: 10.51161/integrar/rems/4703
Editora Integrar© 2025.
Todos os direitos reservados.

DESENVOLVIMENTO E CARACTERIZAÇÃO DE NANO-AMIDOS E SUAS APLICAÇÕES EM EMULSÕES ALIMENTÍCIAS PICKERING: UMA REVISÃO

Karin Krystina Maximo do Nascimento^a, Keyla Emanuelle Ramos de Holanda^a, Emersom Silva Lima^b, Pedro Henrique Campelo Felix^c

- ^a Laboratório de Controle de Qualidade Farmacêutica, Universidade Federal do Amazonas. Avenida Rodrigo Otávio, 6200, Coroado-Manaus, AM - Brasil.
- ^bLaboratório de Atividade Biológica, Universidade Federal do Amazonas. Avenida Rodrigo Otávio, 6200, Coroado-Manaus, AM Brasil.
- ^cDepartamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (DTA/UFV). Campus Universitário, 36570900 Viçosa, MG Brasil

RESUMO

Introdução: O amido é um dos fundamentais compostos de reserva em plantas. Este biopolímero multifuncional de baixo custo tem sido largamente empregado na indústria de alimentos e em diversas utilizações industriais. Pickering no ano de 1907 observou a possibilidade do uso de partículas coloidais dispersas como estabilizantes de emulsões, conhecidas hoje como "emulsões de Pickering", onde as partículas sólidas adsorvidas na interface óleo/água conferem estabilidade as emulsões de modo irreversível. O preparo e a aplicação de nanopartículas biodegradáveis têm despertado interesse e o amido, por ser um polímero natural biodegradável facilmente disponível na natureza é um excelente candidato para formação de nanopartículas estabilizadoras. Metodologia: Foi realizado um levantamento eletrônico de dados no período de novembro/2020 - fevereiro/2021 e selecionou-se artigos publicados a partir do ano de 2015 nos repositórios Google Acadêmico, Scielo, Pubmed e Scopus. Resultados e discussão: O estudo demonstra que o tratamento do amido nativo por diversos métodos como hidrólise ácida, enzimática e sonicação são tecnologias eficazes para se obter nano-amidos, gerando partículas estabilizadoras de emulsões de tamanho nanométrico para uso alimentar. Conclusão: Na procura realizada nas bases de dados mencionadas, foram achados 87.649 e selecionados 108 para a continuação do estudo. Além disso, este trabalho trouxe as abordagens de síntese e modificações dos nano-amidos e sua aplicação como estabilizadores em emulsões Pickering, demonstrando a necessidade de ampliar o conhecimento acerca do tema em questão devido à preocupação com a biocompatibilidade e biodegrabilidade.

Palavras-chave: amido; nano-amidos; emulsões Pickering.

ABSTRACT

Introduction: Starch is one of the fundamental storage compounds in plants. This low-cost, multifunctional biopolymer has been widely used in the food industry and in various industrial applications. In 1907, Pickering observed the potential use of dispersed colloidal particles as emulsion stabilizers, now known as "Pickering emulsions," in which solid particles adsorbed at the oil/water interface provide irreversible stability to emulsions. The preparation and application of biodegradable nanoparticles have drawn growing interest, and starch, as a naturally available biodegradable polymer, is an excellent candidate for forming stabilizing nanoparticles. **Methodology:** An electronic data search was conducted between November 2020 and February 2021, selecting articles published from 2015 onward in Google Scholar, Scielo, PubMed, and Scopus repositories. **Results and discussion:** The study demonstrates that the treatment of native starch through various methods, such as acid hydrolysis, enzymatic hydrolysis, and sonication, are effective technologies for obtaining nanostarches, generating nanometric-sized emulsion-stabilizing particles for food use. **Conclusion:** From the databases consulted, 87,649 studies were found and 108 were selected for further analysis. Furthermore, this work presents synthesis approaches and modifications of nanostarches and their application as stabilizers in Pickering emulsions, highlighting the need to expand knowledge on the subject due to concerns regarding biocompatibility and biodegradability.

Keywords: starch; nanostarch; Pickering emulsions

INTRODUÇÃO

O amido que é um biopolímero multifuncional produzido naturalmente por diversas espécies de plantas como milho, batata, arroz e trigo, como fonte de armazenamento de energia em forma de grânulos e está prontamente disponível na natureza formando produtos finais de baixo custo, sendo largamente empregado na indústria alimentícia e não alimentícia (Aldão et al., 2018).

Atual como agente estabilizante, contribuindo na retenção de umidade e melhora de textura, sabor, vida de prateleira e valor nutricional de alimentos, além de atuar como agente adesivo, ligante e formador de filme (Dai; Zhang; Cheng, 2019; Farrag et al., 2018a). Além do mais, é um dos materiais mais empregados para encapsulação pela sua habilidade de se ligar a compostos de sabor e ser facilmente adaptado para a produção industrial de alimentos funcionais (Ahmad et al., 2020).

No entanto, constantemente os amidos nativos ou naturais não são os mais apropriados para processamentos específicos, pois possuem baixa tolerância a uma ampla gama de condições de processamento, limitando suas aplicações na indústria de alimentos. Desta forma, as modificações são feitas para possibilitar produtos amiláceos com as propriedades essenciais para seu uso específico (Remanan; Zhu, 2020).

As técnicas para modificar o amido nativo estão embasadas em modificações físicas, químicas e enzimáticas a fim de alterar propriedades como solubilidade, absorção, resistência das pastas de amido à quebra de viscosidade por ácidos, tendência de retrogradação, caráter iônico e hidrofílico (Zhu, 2017).

Estudos tem mostrado que uma variedade de nanopartículas comestíveis podem ser preparadas a partir de ingredientes à base de alimentos e o amido, por ser um polímero natural abundante e renovável é um excelente proponente para formação de nanopartículas (Kumari; Yadav; Yadav, 2020).

Acompanhando as recentes evoluções em nanotecnologia, os materiais de nanopartículas de amido, assim como sua preparação e aplicação tem atraído considerável interesse de pesquisadores e da indústria,

graças ao seu tamanho submicrônico, biodegrabilidade, biocompatibilidade, sustentabilidade e efeitos não nocivos na saúde e no meio ambiente (Wang et al., 2018).

O uso de nanopartículas de sílica e outras partículas inorgânicas como estabilizantes na indústria alimentícia e farmacêutica tem uso limitado devido à preocupação com a biocompatibilidade e biodegrabilidade. Os desafios atuais são padronizar partículas naturais, como o amido, como biopolímeros na estabilização das emulsões na indústria alimentícia (Xiao; Li; Huang, 2016).

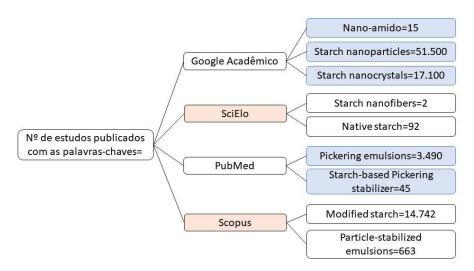
As emulsões podem ser estabilizadas pelos métodos tradicionais através da adição de surfactantes ou pelo uso de moléculas anfifilicas. Com a descoberta de Pickering observou a possibilidade do uso de partículas coloidais dispersas como estabilizantes de emulsões, conhecidas como "emulsões de Pickering" (Murray, 2019).

O estudo aprofundado do mecanismo de estabilidade e as aplicações dessa técnica são recentes. Segundo Hu e colaboradores (2016), as partículas sólidas adsorvidas na interface óleo/água conferem estabilidade as emulsões de Pickering de modo irreversível

MATERIAIS E MÉTODOS

Foi realizado um levantamento eletrônico de dados no período de novembro/2020 – fevereiro/2021 e selecionou-se artigos publicados a partir de do ano de 2015 nos repositórios Google Acadêmico, Scielo, Pubmed e Scopus, usando diferentes palavras e combinações de termos da seguinte forma: Nano-amido, starch nanoparticles, starch nanocrystal, starch nanocrystals, starch nanofibers, native starch, pickering emulsions, starch-based pickering stabilizer, modified starch, particle-stabilized emulsions.

Neste estudo, foram definidos limites para a busca de dados, incluindo trabalhos relacionados a amidos, sua importância econômica, estudos sobre técnicas de modificação e suas aplicações na indústria.


Para a triagem dos estudos foram aplicados os seguintes parâmetros de inclusão: a) estudos publicados nas principais revistas das áreas de Tecnologia, Engenharia de alimentos, Farmácia e Saúde. b) Idiomas: inglês e português. c) trabalhos com estudos de técnicas de modificação de amidos. d) revistas de elevado impacto. A presente revisão foi embasada em uma pesquisa bibliográfica, que consistiu na consulta de trabalhos publicados encontrados na literatura, utilizando as palavras-chave mencionadas acima. Na seleção dos estudos, foram excluídos trabalhos escritos em outros idiomas, periódicos com títulos diferentes e outros termos não correspondentes aos utilizados nas buscas realizadas nas bases de dados.

RESULTADOS E DISCUSSÃO

Na procura realizada nas bases de dados mencionadas, foram achados 87.649 resultados com os descritores: Google acadêmico: nano-amido=15, Starch nanoparticles=51.500, Starch nanocrystals=17.100. SciElo: Starch nanocrystals=7.100, Starch nanofibers=2, Native starch=92. PubMed: Pickering emulsions=3.490, Starch-based Pickering stabilizer=45. Scopus: Modified starch=14.742, Particle-stabilized emulsions=663.

Os resultados alcançados nesta revisão são demonstrados na figura 1. Deste modo, os estudos foram avaliados quanto ao ano de publicação, seu título e resumo como critério de seleção para continuação do estudo. Ao todo, 184 estudos foram selecionados, e 108 escolhidos mais pertinentes para conduzir no tema de estudo.

Figura 1 – Organograma de resultados das procuras realizadas em bases de dados e suas resultas quantitativas mediante a busca por palavras-chaves.

Nano-amidos e sua aplicação na indústria de alimentos

Os nano-amidos são muitas vezes denominados nanocristais, nanopartículas e ainda nanocolóides de amido. No entanto, torna-se quase impossível distinguir os termos "nanocristais de amido" e "nanopartículas de amido", já que ambos os termos têm sido utilizados para se referir a partes cristalinas de amido restante após a hidrólise ou outros tratamentos físicos em que os grânulos de amido são submetidos (Su et al., 2020).

Nanocristais de amido refere-se a parte cristalina do amido que foi obtido por meio da hidrólise das partes amorfas dos grânulos de amido. Enquanto que nanopartículas de amido, geralmente são definidas como pequenas partículas de amido obtidas por meio de processos físicos, que podem incluir matrizes amorfas, como por exemplo, microfluidiação, processos combinados, precipitação, entre outros. De modo que, os nanocristais, nanopartículas e nanocolóides possuem propriedades, cristalinidade e formas diferentes (Le Corre; Bras; Dufresne, 2010).

Desta forma, conclui-se que os nanocristais são originados a partir da hidrólise enzimática e ácida, as nanopartículas são produzidas por processo de regeneração e precipitação, enquanto os nanocolóides, que possuem nanopartículas sólidas dispersas em meio líquido, são produzidos por tratamento mecânico, como homogeneização em alta pressão e extrusão reativa (Majzoobi; Farahnaky, 2021).

Métodos de obtenção nano-amidos

Os principais métodos de obtenção de nano-amido são: Hidrólise ácida, hidrólise enzimática e os tratamentos físicos, como: Ultrassonicação, homogeneização a alta pressão, extrusão reativa e irradiação gama. Os produtos resultantes destes tratamentos descritos acima podem ser diferenciados em nanocristais, nanopartículas ou nanocolóides (Sana; Boodhoo; Zivkovic, 2019).

Dentre estes, a hidrólise ácida ainda é muito utilizada para a preparação de nanocristais de amido, por causa do simples método de produção e facilidade em controlar o processo (Sanchez de la Concha et al., 2018).

Todavia esse processo pode levar dias, o que se faz pensar em um método não convencional alternativo que seja mais rápido, que apresente um rendimento mais alto sem haver necessidade de um tratamento químico (Bel Haaj et al., 2016). Por isso, diversas pesquisas são realizadas atualmente utilizando variadas metodologias que possam ser usadas na produção e modificação do amido, conforme demonstrado na tabela 1.

Tabela 1 – Métodos usados no desenvolvimento de nano-amidos.

Métodos	Fonte	Caracterização de partículas	Referências
Hidrólise ácida	Amido nativo de milho ceroso Amidos de milho ceroso e amaranto	Diâmetro médio de aproximadamente 577, 462 e 322 nm, respectivamente.	(Sanchez de la Concha et al., 2018)
	Amido de milho ceroso	Tamanho de partícula de 58 nm	(Haaj et al., 2014)
Método enzimático combinado com hidrólise ácida	Amido de batata ceroso	Tamanho de partícula variando de 50 nm a 100 nm	(Hao et al., 2018)
Moagem de bolas combinada com hidrólise ácida	Amido de milho ceroso	Diâmetro médio de aproximadamente 31 nm	(Dai et al., 2018)
Ultrassom combinado com hidrólise ácida	Amido de milho normal	Diâmetros menores que 50 nm	(Mohammad Amini; Razavi, 2016)
	Amido de milho ceroso	Diâmetros variando de 50 a 90 nm	(Kim et al., 2013a)
Irradiação Gama	Amido de mandioca nativo e amido de milho ceroso	Diâmetro médio de 31 ± 5 nm	(Lamanna et al., 2013)
Tratamento de calor e umidade com hidrólise ácida	Amido de milho ceroso	Diâmetro médio de 46,3 ± 10,7 nm	(Dai; Zhang; Cheng, 2019)
Tratamento de calor e umidade com condições ligeiramente ácidas e homogeinização	Amido de milho normal	Diâmetros de 50 nm	(Park et al., 2016)
Nanoprecipitação	Amidos de ervilha, milho e batata	Diâmetros de 40 nm	(Farrag et al., 2018a)
	Amido de milho ceroso	Tamanho de partícula 20- 100 nm	(Qiu et al., 2016)
	Amido de batata nativo	Diâmetros menores de 75 nm	(Chang et al., 2017a)
Auto-montagem	Amido de milho ceroso	Diâmetro de aproximadamente 30-40 nm	(Liu et al., 2016)
Método de microemulsão	Amido granular tratado com ácido	Diâmetros de 60 nm	(Wang et al., 2016)
	Amido solúvel em água	O tamanho médio de: 172,2 nm.	(Shi et al., 2011)
Enzimólise e recristalização	Amido de milho ceroso	Diâmetro de aproximadamente 60-120 nm	(SUN et al., 2014b)
	Amido de milheto proso	Diâmetros variando de 20 a 10 nm	(SUN et al., 2014a)
Processo de plasma frio a vácuo combinado com tratamento de ultrassom	Amido de milho ceroso e amido de batata	Tamanho de partícula variando de 10-150 nm	(Chang et al., 2019)
Método de ultrassom	Amido de milho, mandioca e inhame	Amido de milho, mandioca e inhame com diâmetro de 36-68 nm, 35-65 nm e 8-32 nm, respectivamente.	(Minakawa; Faria-Tischer; Mali, 2019)

Método convencional de produção de nano-amidos

Hidrólise ácida

A hidrólise ácida tem sido usada a muito tempo e é amplamente utilizada para produção de nanoamidos devido ser um método simples e de baixo custo (Qiu et al., 2020).

Na reação de hidrólise ácida, o ácido age primeiramente sobre a região amorfa do grânulo, que é mais susceptível à degradação, ocorrendo de forma mais rápida pela interação de variados fatores como teor de amilose, complexo amilose-lipídeo e a presença de porosidade na superfície dos grânulos. Em seguida, a região cristalina é atacada, com uma velocidade mais lenta por motivos de interações em fatores como conteúdo de amilopectina, extensão da distribuição das ligações α-(1-6) no polímero entre as áreas amorfas e cristalinas e a intensidade de empacotamento das duplas hélices dentro da área cristalina (Jayakody; Hoover, 2002; Sanchez de la Concha et al., 2018).

A hidrólise ácida ocorre de fora para dentro, ou seja, das camadas externas do grânulo de amido em direção às camadas internas. Neste processo as regiões cristalinas dos grânulos de amido são consideradas mais resistentes que as regiões amorfas, e, assim, pequenos cristais podem ser isolados a partir da hidrólise (Kim et al., 2013b; Xu et al., 2014)

Entretanto, tem como desvantagens perceptíveis sua pouca flexibilidade, alto consumo de energia, problemas de corrosão de equipamentos e necessidade de neutralização com subsequente retirada dos sais formados (Kaur et al., 2018; Kim; Park; Lim, 2015).

Normalmente são utilizados como agentes de hidrólise o ácido clorídrico ou o ácido sulfúrico, todavia, estudos recentes usam outros ácidos como o oxálico, por exemplo, em temperaturas que variam de 25 °C a 55 °C (Sadeghi et al., 2017).

Hidrólise enzimática

A hidrólise enzimática possui uma perspectiva muito promissora, pois apresenta possibilidades de quebra mais vantajosos do ponto de vista ambiental, visto que não se usa solventes ou reagentes químicos (Almeida et al., 2019).

Amilases como α-amilase, β-amilase e outras enzimas como amiloglucosidase têm considerável relevância, sendo amplamente utilizadas no processo de hidrólise para indústria alimentícia, têxtil e farmacêutica, pois são preferíveis em etapas que envolvem sua difusão na superfície do grânulo de amido, possuindo maior adsorção para promover a catálise (Lacerda et al., 2018).

A degradação dos grânulos de amido inicia-se primeiramente pelo anel de crescimento amorfo e ocorre de duas maneiras: exo-corrosão, onde a enzima desgasta a superfície do grânulo criando buracos específicos; e endo-corrosão, processo pela qual a enzima cria uma abertura direcionada ao centro do grânulo, alterando sua estrutura de modo que leva à quebra (Das; Kayastha, 2019).

A atuação das enzimas mostra alta especificidade, possibilitando o alcance de produtos de propriedades físico-químicas bem definidas além do que o processo ocorre em reações mais brandas. No entanto, a quebra do amido por meio de enzimas exige uma série de condições distintas e muito específicas, é mais onerosa ao considerar os custos de processo e energia (Chen et al., 2019).

A hidrólise enzimática também tem sido utilizada como técnica que possibilita a compreensão da estrutura física e química dos grânulos de amido e de seus componentes. A taxa de hidrólise dos grânulos de

amido depende da origem botânica do sistema enzimático utilizado e do tamanho dos grânulos, entre outros fatores (Soares et al., 2019).

Amidos que naturalmente apresentam superfície mais porosa, como os de milho, são degradados mais facilmente que aqueles cuja superfície é lisa, como o de mandioca, pois é necessário que haja rugosidades na superfície para que ocorra uma mudança para uma geometria esférica (Langenaeken et al., 2019)

Contudo, apresentam como desvantagens o alto custo de produção, baixa estabilidade, resistência ao ataque enzimático que pode ser afetado por fatores como o estado policristalino, tempo de processamento para que ocorra a hidrólise e sua estrutura que influencia diretamente na chance da enzima em se ligar ao substrato (Das et al., 2018).

Métodos não convencionais de produção de nano-amidos

Sonicação

O tratamento ultrassônico de alta intensidade é um método que se baseia na propagação de ondas acústicas com frequências acima de 20 kHz e sua energia gerada é transformada em uma forma quimicamente viável pelo efeito de cavitação (Zhao et al., 2018).

A maioria das alterações físicas e químicas causadas pelo ultrassom é geralmente atribuída aos efeitos da cavitação. A cavitação acústica provoca rápida geração de bolhas no líquido que crescem durante os ciclos de compressão e rarefação das ondas sonoras e, em seguida, colapsam abruptamente (Mallakpour; Khodadadzadeh, 2018).

O método puramente físico de ultrassom de alta intensidade é considerado como um tratamento não convencional de produção de nano-amidos, ecologicamente correto e eficaz, utilizado para viabilizar modificações físicas em biopolímeros (Aliyu; Hepher, 2000; Baxter; Zivanovic; Weiss, 2005; Chemat et al., 2017), inativação de microrganismos (Cameron; McMaster; Britz, 2008; Rana; Parmar; Shweta, 2017), e rompimento das membranas fosfolipídicas (Andrade et al., 2004; Lima; Andrade, 2007).

Segundo Kentish e Feng (2014), na indústria alimentícia, as aplicações do ultrassom são para ser utilizados em emulsificação, homogeneização, cristalização, filtração, separação, alteração da viscosidade, inativação de enzimas e bactérias pelo rompimento da membrana celular.

Em estudo realizado por (Alarcon-Rojo e coaboradores (2015), a exposição prévia de alimentos ao ultrassom antes de realizada a secagem tem se mostrado muito eficiente. Segundo estes autores, a aplicação de pulsos eletromecânicos antecipadamente à secagem de alimentos promove aumento na cinética de transporte de massa, possibilitando melhor efetividade no processo de secagem, especialmente ao tratar de sistemas sólido-líquido como a desidratação osmótica, por exemplo.

Se tratando das moléculas de amido, as massas molares dos seus compostos influenciam significativamente em muitas de suas propriedades, tais como absorção de água e solubilidade (Huang et al., 2017).

A hidrólise acontece principalmente próximo ao meio da cadeia, não causando alterações da estrutura química (Madras; Kumar; Chattopadhyay, 2000; Verruck; Prudencio, 2018).

Particularmente no amido, a sonicação tem sido usada para promover a desagregação das moléculas de amido retrogradadas (Huang; Li; Fu, 2007), a hidrólise de grânulos gelatinizados (Chung et al., 2002) e

diminuição da viscosidade (Iida et al., 2008).

Desta forma, o ultrassom surge como um método emergente de modificação de nano-amido ecologicamente correto com características de tempo de processamento rápidos e reações mais brandas com altos rendimentos (Lin et al., 2020).

Plasma Frio

O plasma frio é considerado um novo método de modificação física para amidos que tem despertado grande interesse por não utilizar produtos químicos na modificação de biopolímeros (Banura et al., 2018).

Conhecido como o quarto estado da matéria, pode ser definido como um gás ionizado, constituído por uma mistura de elétrons, átomos, moléculas altamente excitadas, íons positivos e negativos, radicais livres e partículas neutras (Dong et al., 2018).

O plasma frio à pressão atmosférica pode ser obtido expondo um gás/mistura de gases a um campo elétrico, que por sua vez agita as partículas carregadas, levando a colisões com as espécies pesadas (por exemplo, íons e neutros) (Thirumdas et al., 2017).

O tratamento com este método causa modificações nas características estruturais por mecanismos como: o aumento da energia superficial, incorporações de grupos funcionais, reticulação, alterações na natureza hidrofílicas e despolimerização que pode ocorrer nas cadeias laterais de amilopectina ou quebra das ligações glicosídicas que estão próximas as cadeias laterais (Wongsagonsup et al., 2014; Zhang et al., 2014).

Esse método tem a vantagem de economizar tempo, não necessita de reagentes químicos, não é tóxico e é ecologicamente correto (Attri; Arora; Choi, 2017).

Moagem

A moagem de bolas é um método físico simples de modificação de nano-amidos que tem sido usado para produzir partículas em escala nanométrica (Dai et al., 2018).

A técnica se baseia em ações mecânicas por meio de esferas de aço giratórias em alta velocidade que geram modificações na estrutura e propriedades do amido através do impacto da moagem, força de cisalhamento, fricção, impacto e colisão, causando uma descamação da superfície para o interior das camadas do amido, ocasionando mudanças nas propriedades funcionais como cristalinidade diminuída, viscosidade reduzida, maior dispersão em água fria e uma diminuição de calor e temperatura necessários para o processo de gelatinização (Patel; Chakraborty; Murthy, 2016; Soe et al., 2020).

Estudos anteriores mostraram que ao induzir a quebra do grânulo e amorfização foi confirmado que a técnica é capaz de alterar a morfologia, cristalinidade, peso molecular dos grânulos de amido e razão amilose / amilopectina (Liu et al., 2020; Lv et al., 2019).

O método tem como vantagens ter uma técnica simples de operação, ser econômico, amigo do meio ambiente e não ser necessário o uso de reagentes químicos (Lu; Xiao; Huang, 2018).

Nanoprecipitação

A nanoprecipitação é um método embasado na formação espontânea de nanopartículas quando uma solução de amido gelatinizado em uma determinada concentração é adicionada a um não solvente como etanol, metanol, n-propanol, isopropanol ou n-butanol entre outros, ou inversamente, deste modo, ocorre a

formação de partículas de polímeros em nanoescala (Hedayati; Niakousari; Mohsenpour, 2020).

A precipitação pode ser atingida promovendo supersaturação, seguida por núcleos e crescimento de partículas, e partículas de amido coloidal de tamanho nanométrico são subsequentemente formadas. Quando a reação começa, o grau de supersaturação começa a aumentar rapidamente à medida que o não solvente é adicionado à solução de amido, e variações na tensão interfacial fornecem uma força motriz para a formação de nanocristais (Chang et al., 2017b).

Estudos anteriores mostraram que a concentração da solução de amido, a proporção do volume de solvente para não solvente e tipos de solvente e não solvente influenciaram o tamanho das nanopartículas precipitadas, ou seja, para sintetizar nanopartículas menores por meio da precipitação é necessária uma solução de amido altamente diluída e um volume maior de não-solventes devem ser usados porque a alta concentração de amido leva à formação de solução viscosa. A alta viscosidade da solução de amido dificulta a difusão da solução de amido em direção ao não solvente, o que resulta em partículas maiores (Farrag et al., 2018b).

As principais vantagens desse método são que nenhum equipamento especializado é necessário, partículas mais homogêneas e os custos de energia são baixos, enquanto a principal desvantagem é que o solvente pode ter que ser removido após a formação das nanopartículas (Lebouille et al., 2014).

Extrusão Reativa

A extrusão reativa é um método mecânico usado para modificar as propriedades de biopolímeros existentes ou para produzir novos através da combinação de operações de transporte de massa e calor com reações químicas simultâneas ocorrendo dentro da extrusora forçando a quebra molecular, criando novas estruturas helicoidais (Escobar-Puentes et al., 2019; Siyamak; Laycock; Luckman, 2020).

Na técnica de extrusão, os grânulos de amido sob a influência de uma entrada de temperatura, forças de cisalhamento significativas e pressão que abre estruturas fechadas sofrem mudanças estruturais notáveis, incluindo sua fusão, gelatinização e fragmentação (García-Armenta et al., 2021).

Em especial, extrusoras de dupla rosca é um ótimo equipamento de mistura e reação e podem ser usadas para produzir amido modificado com uma qualidade mais consistente em um processo contínuo (Cai et al., 2019).

Tem a vantagem de ser uma tecnologia versátil e eficiente em energia para rápida fabricação, produzindo grandes quantidades de material modificado em um curto espaço de tempo, gerando economia no processamento e possui uma aplicação industrial mais ampla por usar menos solventes e catalisadores, tornando-o um processo mais eficiente e ambientalmente correto (Fonseca-Florido et al., 2019; Gutiérrez; Valencia, 2021).

Métodos de Caracterização de Nano-amidos

Após a produção dos nano-amidos, as caracterizações químicas e físicas são necessárias para analisar sua aplicação, logo devem ser investigados quanto as caracterizações físicas, morfológicas e térmicas, através das análises de conteúdo de amilose, microscópio eletrônico de varredura (MEV), espectroscopia FTIR e tamanho de partícula. Como as propriedades dos nano-amidos podem sofrer alterações devido a temperatura ou mesmo a umidade relativa durante a realização dos ensaios de caracterização, faz-se necessário seguir parâmetros para cada uma técnica, para que assim possa haver reprodutibilidade (Qiu et

al., 2020).

Determinação do Conteúdo de Amilose

A determinação do conteúdo de amilose é uma nova técnica de análise de fluxo contínuo. O teor de amilose é determinado por um sistema de injeção em fluxo automatizado (FIAStar 5000, FOSS, Ltd., Suécia). Esta metodologia consiste em usar um certo volume de solução de amostra e injetar em uma solução de reagente fluente e sem espaçamento de ar (ou água) contendo o fluxo de acordo com o método comparado e a curva de trabalho desenhada pela solução padrão medida a concentração de uma substância na amostra solução (Xiao et al., 2020).

Difração de Raios-X

DRX é um método baseado na interferência construtiva de raios X monocromáticos em uma amostra cristalina. Substâncias cristalinas contendo uma rede de átomos podem difratar os raios X incidentes e gerar um padrão de interferência. O padrão resultante pode ser analisado para obter informações sobre a estrutura atômica ou molecular desse material usado o equipamento PANalytical, modelo Empyrean (Siemens) com comprimento de onda Cu-K α (λ = 1,544 Å) e um ajuste de 40kV e 20 mA. A temperatura a 20°C, num intervalo de ângulo 2 θ de 3-30° com um período de medição de 5s/2h (Alderton, 2021).

Espalhamento de Luz (DSL)

O espalhamento de luz dinâmico é uma técnica muito utilizada para avaliar o tamanho dos nanoamidos e sua distribuição por ser rápido e fácil. O equipamento utilizado é o Vasco 2 (Cordouan Technologies, França) e para a medição, um pequeno volume (1 mL) de uma suspensão diluída (0,01% v/v) é injetado na célula de medição. O tamanho das partículas é expresso como o diâmetro médio com base no número obtido pelo método de integração cumulativa (Rao et al., 2019; Romdhane et al., 2015).

Potencial Zeta

O potencial zeta dos nano-amidos é determinado medindo sua velocidade enquanto se movem em um campo eletroforético. Partículas e moléculas com potencial zeta migrarão em direção a um eletrodo se um campo for aplicado. A velocidade com que se movem é proporcional à intensidade do campo e seu potencial zeta. O equipamento usado para medir o potencial zeta dos nano-amidos é o aparelho disponível comercialmente produzido pela Malvern Instruments limited UK (Zetasizer Nano ZS90), onde as suspensões são diluídas para 0,002% v/v (Bel Haaj et al., 2016; Ionov; Gontarek; Bryszewska, 2020).

Microscopia eletrônica de varredura (MEV)

A microscopia eletrônica de varredura é uma técnica que serve para analisar a microestrutura e morfologia da superfície dos nano-amidos utilizando um feixe de elétrons de pequeno diâmetro para explorar a superfície amostral, transmitindo o sinal do detector por linhas sucessivas a uma tela catódica, cuja varredura está perfeitamente sincronizada com aquela do feixe incidente. O sinal de imagem resulta na interação do feixe incidente com a superfície da amostra, e a observação é permitida a partir do sinal recolhido pelo detector utilizando o microscópio JEON JSM-6060 (JEOL, Tókio, Japão), o qual possui uma faixa de magnificação de 18 X A 300.000 X. As amostras em pó são colocadas sobre stubs com uma fita adesiva dupla-face e metalizadas com ouro. As imagens são obtidas utilizando-se uma voltagem de

aceleração de 10KV (Luchese et al., 2018; Sharma; Bhardwaj, 2019).

Espectroscopia de Infravermelho com Transformada de Fourier (FTIR)

A análise da estrutura química é realizada através da espectroscopia de infravermelho por transformada de Fourier (FT-IR), onde os nano-amidos poderão ser analisados no modo de refletância total atenuada (ATR) usando um espectrômetro Bruker Tensor 27 FTIR (Bruker, Billerica, MA, EUA), sendo registrado de 500 cm-1 a 4000 cm-1 (Johnson et al., 2020).

Emulsões Pickering

As emulsões podem ser estabilizadas pelos métodos tradicionais através da adição de surfactantes ou pelo uso de moléculas anfifilicas. Com a descoberta de Pickering observou a possibilidade do uso de partículas coloidais dispersas como estabilizantes de emulsões, conhecidas como "emulsões de Pickering" (Nicolai; Murray, 2017; Pickering, 1907).

O estudo aprofundado do mecanismo de estabilidade e as aplicações dessa técnica são recentes. Segundo HU e colaboradores (2016), as partículas sólidas adsorvidas na interface óleo/água conferem estabilidade as emulsões de Pickering de modo irreversível.

Além da barreira física formada pelas partículas sólidas, existe a barreira energética (energia de dessorção), além das interações entre as partículas e a fase líquida e as forças atrativas laterais entre as partículas. Essa interação é relacionada à equação $\Delta E = \pi r^2 \gamma (1 - |\cos \theta|)^2$, onde ΔE = energia necessária para remover uma partícula adsorvida, r = raio da partícula (m), γ = tensão interfacial entre as fases (N.m-1) (Ma; Dai, 2011; Salari et al., 2014).

Segundo estudos recentes, o ângulo de contato θ entre as partículas, o que caracteriza a molhabilidade, é essencial para obter se emulsões Pickering estáveis. Para se obter emulsões óleo/água (O/W), deve se usar partículas com θ menor de 90°, já nas emulsões água/óleo (W/O) o θ será maior que 90° (Wu; Ma, 2016; Xiao; Li; Huang, 2016).

O uso de nanopartículas de sílica e outras partículas inorgânicas como estabilizantes na indústria alimentícia e farmacêutica tem uso limitado devido à preocupação com a biocompatibilidade e biodegrabilidade. Os desafios atuais são padronizar partículas naturais, como o amido, como biopolímeros na estabilização das emulsões na indústria alimentícia (Xiao; Li; Huang, 2016).

Emulsões alimentícias do tipo Pickering

A preocupação do consumidor com a saúde humana e ambiental está incentivando os fabricantes de alimentos a usar ingredientes alimentares mais naturais e sustentáveis. Em particular, há interesse em substituir ingredientes sintéticos por naturais e substituir ingredientes de origem animal por ingredientes de origem vegetal (Chung et al., 2017; McClements; Bai; Chung, 2017).

A eficácia das partículas baseadas em biopolímeros como agentes estabilizadores de sistemas emulsionados e aerados é atribuível a um par de mecanismos contributivos - Estabilização de Pickering por partículas adsorvidas na interface óleo-água ou ar-água e estruturação em forma de gel de partículas entre gotículas ou bolhas (Dickinson, 2017).

A emulsão de pickering estabilizada por partículas sólidas, oferece uma ampla gama de aplicações potenciais, porque geralmente fornece um sistema mais estável do que a emulsão estabilizada com

surfactante. Entre vários estabilizadores sólidos, os nanossacarídeos podem abrir novas oportunidades para futuras emulsões alimentícias de Pickering devido a seus tamanhos exclusivos, anfifilicidade e outras propriedades favoráveis (por exemplo, estabilidade química, biodegradabilidade, biocompatibilidade e renovabilidade e naturalidade) (Fujisawa; Togawa; Kuroda, 2017).

Aplicações de nano-amidos em emulsões alimentícias Pickering

O uso dos nanocristais de amido aplicados em emulsões Pickering de qualidade alimentar tem trazido resultados satisfatórios. A partir de 2016, a literatura científica foi revisada sobre aspectos relevantes sobre o uso das emulsões Pickering em alimentos e bebidas (Murray, 2019).

Exemplo como no estudo de Ye e colaboradores (2017), onde as nanopartículas de amido foram adsorvidas na interface O/A da emulsão formando um filme barreira. Nesse estudo nanopartículas de amido solúvel modificado e insolúvel revelaram alta estabilidade de partículas para melhorar a qualidade das emulsões alimentares.

Outro trabalho recente caracterizou emulsões Pickering estabilizadas por nano-amidos, verificando a variedade do amido e o tamanho da partícula. As variedades testadas foram nanopartículas de amido a partir de milho, tapioca, batata doce e amido de milho ceroso como estabilizadores, cujos resultados sugerem promissores emulsificantes aplicados à emulsões Pickering, com característica estável (Ge et al., 2017).

Destaca-se também o estudo sobre as propriedades de digestão in vitro de emulsões Pickering estabilizadas por nanocristais de amido. Nesse estudo usou-se três óleos comestíveis típicos com diferentes comprimentos de cadeia de ácidos graxos. Tendo como resultado a taxa de digestão lipídica maior nos triacilgliceróis de cadeia curta e a porcentagem de nanocristais de amido digeridos maior nos de cadeia longa. Fornecendo assim informações relevantes sobre as propriedades físico químicas e digestivas das emulsões Pickering de grau alimentar (Liang et al., 2016).

Os desafios continuam para encontrar partículas sem nenhuma modificação química aceitável, tornando os nano-amidos candidatos promissores como emulsionantes de emulsões Pickering na indústria alimentícia (Qian et al., 2020).

Desafios para aplicação industrial (custos, reprodutibilidade, segurança alimentar)

Os nano-amidos são considerados alternativas sustentáveis aos surfactantes tradicionais empregados na estabilização de emulsões alimentícias, devido à sua capacidade de biodegradabilidade, baixa toxicidade e origem renovável. Diferente dos emulsificantes tradicionais, que podem causar danos persistentes a saúde e limitações ambientais, partículas de amido modificados podem atuar como estabilizadores em emulsões, garantindo que se mantenham estáveis física e quimicamente, sem a necessidade do uso de tensoativos adicionais, além de também possibilitar a encapsulação de compostos bioativos e melhorar a funcionalidade do produto final (Marta et al., 2023; Ramos et al., 2025).

Mudar a produção de nanoamidos para um nível industrial apresenta vários desafios, como os preços elevados da fabricação que são uma barreira importante, visto que métodos como quebra por ácido, ultrassom precisam de eletricidade, reagentes químicos, equipamentos robustos e etapas de limpeza que aumentam o preço do processo quando comparado ao uso de amidos comuns (Bajer, 2023).

Além disso, a falta de padronização continua sendo um problema, pois pequenas mudanças nas

condições de produção como a quantidade de amido, a força do ultrassom, o tempo e a relação entre o líquido e a precipitação podem causar diferenças no tamanho, aglomerados ou falta de uniformidade nas partículas, o que prejudica características cruciais para usos industriais (Sun et al., 2025).

Ainda há muito a ser investigado sobre a segurança alimentar e os efeitos toxicológicos em larga escala desses materiais. Apesar de algumas pesquisas indicarem que as nanopartículas de amido apresentam boa compatibilidade biológica como estabilizantes de emulsões como um estudo em células de pele e pele humana ex vivo (Kim et al., 2023), o emprego de nanomateriais em alimentos ou ingredientes levanta questões sobre regulamentação, migração de partículas, acúmulo biológico e a necessidade de análises toxicológicas específicas, como apontado em estudos sobre nanopartículas alimentares (Ranjha et al., 2022).

Portanto, para que os nano-amidos possam ser utilizados com segurança na indústria, é importante o uso de abordagens que diminuam os custos como métodos mais sustentáveis, uma padronização a fim de garantir segurança alimentar por meio de estudos toxicológicos detalhados e rastreabilidade.

CONCLUSÃO

Devido à sua biodegradabilidade e natureza amorfa e cristalina, o amido tem sido cada vez mais utilizado como uma boa alternativa para a preparação de nanopartículas.

Nesta revisão, é possível concluir que nano-amidos podem ser criados a partir do amido nativo de diversas espécies de plantas usando uma variedade de métodos de processamento diferentes.

Este estudo não só fornece técnicas para a preparação de nano-amidos com bom desempenho de produção e eficiência, mas também apoia a aplicação de nano-amidos na área de emulsificantes de alimentos. Esses nano-amidos têm grande potencial para estabilizar emulsões Pickering e seu uso está em crescente interesse na indústria de alimentos.

Recomenda-se a ampliação de estudos voltados ao desenvolvimento e aplicação de métodos ambientalmente sustentáveis com ênfase na padronização dos processos, na viabilidade em escala industrial e na avaliação toxicológica dos materiais obtidos.

CONFLITOS DE INTERESSE

Os autores declaram não haver conflitos de interesse.

REFERÊNCIAS

AHMAD, Mudasir et al. Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. **Scientific Reports**, v. 10, n. 1, p. 3533, dez. 2020.

ALARCON-ROJO, A. D. et al. Power ultrasound in meat processing. **Meat Science**, v. 107, p. 86–93, set. 2015.

ALDÃO, David Chena et al. Starch nanoparticles – two ways of their preparation. Czech Journal of Food Sciences, v. 36, n. No. 2, p. 133–138, 7 maio 2018.

ALDERTON, David. X-Ray Diffraction (XRD). In: **Encyclopedia of Geology.** [S.l.]: Elsevier, 2021. p. 520–531.

ALIYU, M.; HEPHER, M. J. Effects of ultrasound energy on degradation of cellulose material. **Ultrasonics Sonochemistry**, v. 7, n. 4, p. 265–268, 2000.

ALMEIDA, Raphael Lucas Jacinto et al. Influence of enzymatic hydrolysis on the properties of red rice starch. **International Journal of Biological Macromolecules**, v. 141, p. 1210–1219, dez. 2019.

ANDRADE, C. T. et al. Purification and characterization of human hemoglobin: effect of the hemolysis conditions. **International Journal of Biological Macromolecules,** v. 34, n. 4, p. 233–240, ago. 2004.

ATTRI, Pankaj; ARORA, Bharti; CHOI, Eun Ha. Retraction: Utility of plasma: a new road from physics to chemistry. **RSC Advances**, v. 7, n. 26, p. 15735–15735, 2017.

BAJER, Dagmara. Nano-starch for food applications obtained by hydrolysis and ultrasonication methods. **Food Chemistry,** v. 402, p. 134489, fev. 2023.

BANURA, Sidhant et al. Modification of starch using low pressure radio frequency air plasma. **LWT**, v. 89, p. 719–724, mar. 2018.

BAXTER, Shari; ZIVANOVIC, Svetlana; WEISS, Jochen. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. **Food Hydrocolloids**, v. 19, n. 5, p. 821–830, set. 2005.

BEL HAAJ, Sihem et al. Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study. **Carbohydrate Polymers**, v. 143, p. 310–317, jun. 2016.

CAI, Canxin et al. Structural changes of chemically modified rice starch by one-step reactive extrusion. **Food Chemistry,** v. 288, p. 354–360, ago. 2019.

CAMERON, Michelle; MCMASTER, Lynn D.; BRITZ, Trevor J. Electron microscopic analysis of dairy microbes inactivated by ultrasound. **Ultrasonics Sonochemistry**, v. 15, n. 6, p. 960–964, set. 2008.

CHANG, Ranran et al. Green preparation and characterization of starch nanoparticles using a vacuum cold plasma process combined with ultrasonication treatment. **Ultrasonics Sonochemistry**, v. 58, p. 104660, nov. 2019.

CHANG, Yanjiao et al. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. **Food Chemistry**, v. 227, p. 369–375, jul. 2017a.

CHANG, Yanjiao et al. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation. **Food Chemistry**, v. 227, p. 369–375, jul. 2017b.

CHEMAT, Farid et al. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innovative Food Science and Emerging Technologies Elsevier Ltd., 1 jun. 2017.

CHEN, Yun et al. Preparation and emulsification properties of dialdehyde starch nanoparticles. **Food Chemistry,** v. 286, p. 467–474, jul. 2019.

CHUNG, Cheryl et al. Formulation of food emulsions using natural emulsifiers: Utilization of quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. **Journal of Food Engineering,** v. 209, p. 1–11, set. 2017.

CHUNG, Koo Min et al. Physicochemical Properties of Sonicated Mung Bean, Potato, and Rice Starches. **Cereal Chemistry Journal,** v. 79, n. 5, p. 631–633, set. 2002.

DAI, Limin et al. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. **Carbohydrate Polymers**, v. 180, p. 122–127, jan. 2018.

DAI, Limin; ZHANG, Jun; CHENG, Fang. Succeeded starch nanocrystals preparation combining heat-moisture treatment with acid hydrolysis. **Food Chemistry**, v. 278, p. 350–356, abr. 2019.

DAS, Ranjana et al. Covalent immobilization of peanut β-amylase for producing industrial nanobiocatalysts: A comparative study of kinetics, stability and reusability of the immobilized enzyme. **Food Chemistry**, v. 245, p. 488–499, abr. 2018.

DAS, Ranjana; KAYASTHA, Arvind M. Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea). **Food Chemistry**, v. 276, p. 583–590, mar. 2019.

DICKINSON, Eric. Biopolymer-based particles as stabilizing agents for emulsions and foams. **Food Hydrocolloids**, v. 68, p. 219–231, jul. 2017.

DONG, Shuang et al. Surface modification via atmospheric cold plasma (ACP): Improved functional properties and characterization of zein film. **Industrial Crops and Products**, v. 115, p. 124–133, maio 2018.

ESCOBAR-PUENTES, Alberto A. et al. Preparation and Characterization of Succinylated Nanoparticles from High-Amylose Starch via the Extrusion Process Followed by Ultrasonic Energy. **Food and Bioprocess Technology,** v. 12, n. 10, p. 1672–1682, 24 out. 2019.

FARRAG, Yousof et al. Preparation of donut-shaped starch microparticles by aqueous-alcoholic treatment. **Food Chemistry**, v. 246, p. 1–5, abr. 2018a.

FARRAG, Yousof et al. Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. **International Journal of Biological Macromolecules**, v. 114, p. 426–433, jul. 2018b.

FONSECA-FLORIDO, H. A. et al. Effects of multiphase transitions and reactive extrusion on in situ thermoplasticization/succination of cassava starch. **Carbohydrate Polymers**, v. 225, p. 115250, dez. 2019.

FUJISAWA, Shuji; TOGAWA, Eiji; KURODA, Katsushi. Nanocellulose-stabilized Pickering emulsions and their applications. **Science and Technology of Advanced Materials,** v. 18, n. 1, p. 959–971, 31 dez. 2017.

GARCÍA-ARMENTA, Evangelina et al. Preparation of surfactant-free emulsions using amaranth starch modified by reactive extrusion. **Colloids and Surfaces A: Physicochemical and Engineering Aspects,** v. 608, p. 125550, jan. 2021.

GE, Shengju et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size. **Food Chemistry**, 2017.

GUTIÉRREZ, Tomy J.; VALENCIA, Germán Ayala. Reactive extrusion-processed native and phosphated starch-based food packaging films governed by the hierarchical structure. **International Journal of**

Biological Macromolecules, v. 172, p. 439–451, mar. 2021.

HAAJ, Sihem Bel et al. Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. **ACS Applied Materials & Interfaces,** v. 6, n. 11, p. 8263–8273, 11 jun. 2014.

HAO, Yacheng et al. Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. **Carbohydrate Polymers,** v. 184, p. 171–177, mar. 2018.

HEDAYATI, Sara; NIAKOUSARI, Mehrdad; MOHSENPOUR, Ziba. Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment. **International Journal of Biological Macromolecules**, v. 143, p. 136–142, jan. 2020.

HU, Ya-Qiong et al. Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles. **Food Hydrocolloids**, v. 61, p. 300–310, dez. 2016.

HUANG, Guoping et al. Effects of ultrasound on microbial growth and enzyme activity. **Ultrasonics Sonochemistry,** v. 37, p. 144–149, jul. 2017.

HUANG, Qiang; LI, Lin; FU, Xiong. Ultrasound Effects on the Structure and Chemical Reactivity of Cornstarch Granules. **Starch - Stärke**, v. 59, n. 8, p. 371–378, ago. 2007.

IIDA, Yasuo et al. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. **Innovative Food Science & Emerging Technologies**, v. 9, n. 2, p. 140–146, abr. 2008.

IONOV, Maksim; GONTAREK, Wojciech; BRYSZEWSKA, Maria. Zeta potential technique for analyzing semen quality. **MethodsX**, v. 7, p. 100895, 2020.

JAYAKODY, LOUIS; HOOVER, RICHARD. The Effect Of Lintnerization On Cereal Starch Granules. **Food Research International**, v. 7, p. 665–680, 2002.

JOHNSON, Joel et al. Potential for Fourier transform infrared (FTIR) spectroscopy toward predicting antioxidant and phenolic contents in powdered plant matrices. **Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy**, v. 233, p. 118228, jun. 2020.

KAUR, Jashandeep et al. Cereal starch nanoparticles—A prospective food additive: A review. **Critical Reviews in Food Science and Nutrition,** v. 58, n. 7, p. 1097–1107, 3 maio 2018.

KENTISH, Sandra; FENG, Hao. Applications of Power Ultrasound in Food Processing. **Annual Review of Food Science and Technology**, v. 5, n. 1, p. 263–284, 28 fev. 2014.

KIM, Hee Young et al. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydrate Polymers, v. 98, n. 1, p. 295–301, 2013a.

KIM, Hee-Young et al. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. **Carbohydrate Polymers**, v. 98, n. 1, p. 295–301, out. 2013b.

KIM, Hee-Young; PARK, Sung Soo; LIM, Seung-Taik. Preparation, characterization and utilization of starch nanoparticles. **Colloids and Surfaces B: Biointerfaces,** v. 126, p. 607–620, fev. 2015.

KIM, So-Yeon et al. Safety Assessment of Starch Nanoparticles as an Emulsifier in Human Skin Cells, 3D Cultured Artificial Skin, and Human Skin. **Molecules**, v. 28, n. 2, p. 806, 13 jan. 2023.

KUMARI, Suman; YADAV, Baljeet S.; YADAV, Ritika B. Synthesis and modification approaches for starch nanoparticles for their emerging **food industrial applications:** A review. Food Research International, v. 128, p. 108765, fev. 2020.

LACERDA, Liziane D. et al. Effects of α-Amylase, Amyloglucosidase, and Their Mixture on Hierarchical Porosity of Rice Starch. **Starch - Stärke**, v. 70, n. 11–12, p. 1800008, nov. 2018.

LAMANNA, Melisa et al. Development and characterization of starch nanoparticles by gamma radiation: Potential application as starch matrix filler. **Carbohydrate Polymers**, v. 97, n. 1, p. 90–97, ago. 2013.

LANGENAEKEN, Niels A. et al. Different gelatinization characteristics of small and large barley starch granules impact their enzymatic hydrolysis and sugar production during mashing. **Food Chemistry,** v. 295, p. 138–146, out. 2019.

LE CORRE, Déborah; BRAS, Julien; DUFRESNE, Alain. Starch Nanoparticles: A Review. **Biomacromolecules**, v. 11, n. 5, p. 1139–1153, 10 maio 2010.

LEBOUILLE, J. G. J. L. et al. Nanoprecipitation of polymers in a bad solvent. **Colloids and Surfaces A:** Physicochemical and Engineering Aspects, v. 460, p. 225–235, out. 2014.

LIANG, Rong et al. Preparation of Pickering emulsions with short, medium and long chain triacylglycerols stabilized by starch nanocrystals and their: In vitro digestion properties. **RSC Advances**, 2016.

LIMA, Maria Celiana P.; ANDRADE, Cristina T. Stroma-Free Hemoglobin from Bovine Blood. **Artificial Cells, Blood Substitutes, and Biotechnology,** v. 35, n. 4, p. 431–447, 11 jan. 2007.

LIN, Xiong et al. Structural and physicochemical properties of lotus seed starch nanoparticles prepared using ultrasonic-assisted enzymatic hydrolysis. **Ultrasonics Sonochemistry**, v. 68, p. 105199, nov. 2020.

LIU, Chengzhen et al. Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature. **International Journal of Biological Macromolecules**, v. 84, p. 354–360, mar. 2016.

LIU, Liqin et al. Ball milling pretreatment facilitating α -amylase hydrolysis for production of starch-based bio-latex with high performance. **Carbohydrate Polymers**, v. 242, p. 116384, ago. 2020.

LU, Xuanxuan; XIAO, Jie; HUANG, Qingrong. Pickering emulsions stabilized by media-milled starch particles. **Food Research International**, v. 105, p. 140–149, mar. 2018.

LUCHESE, Cláudia Leites et al. Development and characterization of cassava starch films incorporated with blueberry pomace. **International Journal of Biological Macromolecules,** v. 106, p. 834–839, jan. 2018.

LV, Yaozhong et al. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. **International Journal of Biological Macromolecules**, v. 129, p. 207–213, maio

2019.

MA, Huan; DAI, Lenore L. Particle Self-Assembly in Ionic Liquid-in-Water Pickering Emulsions. **Langmuir**, v. 27, n. 2, p. 508–512, 18 jan. 2011.

MADRAS, Giridhar; KUMAR, Sanjay; CHATTOPADHYAY, Sujay. Continuous distribution kinetics for ultrasonic degradation of polymers. **Polymer Degradation and Stability**, v. 69, n. 1, p. 73–78, jun. 2000.

MAJZOOBI, Mahsa; FARAHNAKY, Asgar. Granular cold-water swelling starch; properties, preparation and applications, a review. **Food Hydrocolloids,** v. 111, p. 106393, fev. 2021.

MALLAKPOUR, Shadpour; KHODADADZADEH, Leila. Ultrasonic-assisted fabrication of starch/MWCNT-glucose nanocomposites for drug delivery. **Ultrasonics Sonochemistry,** v. 40, p. 402–409, jan. 2018.

MARTA, Herlina et al. Starch Nanoparticles: Preparation, Properties and Applications. **Polymers**, v. 15, n. 5, p. 1167, 25 fev. 2023.

MCCLEMENTS, David Julian; BAI, Long; CHUNG, Cheryl. Recent Advances in the Utilization of Natural Emulsifiers to Form and Stabilize Emulsions. **Annual Review of Food Science and Technology**, v. 8, n. 1, p. 205–236, 28 fev. 2017.

MINAKAWA, Alyne F. K.; FARIA-TISCHER, Paula C. S.; MALI, Suzana. Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. **Food Chemistry**, v. 283, p. 11–18, jun. 2019.

MOHAMMAD AMINI, Asad; RAZAVI, Seyed Mohammad Ali. A fast and efficient approach to prepare starch nanocrystals from normal corn starch. **Food Hydrocolloids**, v. 57, p. 132–138, jun. 2016.

MURRAY, Brent S. Pickering emulsions for food and drinks. Current Opinion in Food Science, 2019a.

MURRAY, Brent S. Pickering emulsions for food and drinks. Current Opinion in Food Science, 2019b.

NICOLAI, Taco; MURRAY, Brent. Particle stabilized water in water emulsions. **Food Hydrocolloids,** v. 68, p. 157–163, jul. 2017.

PARK, Eun Young et al. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization. **Carbohydrate Polymers,** v. 151, p. 274–282, out. 2016.

PATEL, Chetankumar M.; CHAKRABORTY, Mousumi; MURTHY, Z. V. P. Fast and scalable preparation of starch nanoparticles by stirred media milling. **Advanced Powder Technology**, v. 27, n. 4, p. 1287–1294, jul. 2016.

PICKERING, Spencer Umfreville. Emulsions. **Journal of the Chemical Society**, v. 91, p. 2001–2021, 1907.

QIAN, Xiaoli et al. Viscoelasticity of olive oil/water Pickering emulsions stabilized with starch

nanocrystals. Carbohydrate Polymers, v. 230, p. 115575, fev. 2020.

QIU, Chao et al. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. **LWT**, v. 74, p. 303–310, dez. 2016.

QIU, Chao et al. Advances in research on preparation, characterization, interaction with proteins, digestion and delivery systems of starch-based nanoparticles. **International Journal of Biological Macromolecules**, v. 152, p. 117–125, jun. 2020.

RAMOS, Giselle Vallim Corrêa et al. Starch-Based Pickering Emulsions for Bioactive Compound Encapsulation: Production, Properties, and Applications. **Processes**, v. 13, n. 2, p. 342, 26 jan. 2025.

RANA, Anita; PARMAR, Shweta; SHWETA, ANITA RANA. Ultrasonic processing and its use in food industry: A review. **International Journal of Chemical Studies IJCS**, v. 5, p. 1961–1968, 2017.

RANJHA, Muhammad Modassar Ali Nawaz et al. Biocompatible Nanomaterials in Food Science, Technology, and Nutrient Drug Delivery: Recent Developments and Applications. **Frontiers in Nutrition**, v. 8, 20 jan. 2022.

RAO, Pingfan et al. Dynamic light scattering for food quality evaluation. In: **Evaluation Technologies for Food Quality.** [S.l.]: Elsevier, 2019. p. 535–557.

REMANAN, Mejo Kuzhithariel; ZHU, Fan. Encapsulation of rutin using quinoa and maize starch nanoparticles. **Food Chemistry**, p. 128534, nov. 2020.

ROMDHANE, Ahlem et al. Effect of pH and ionic strength on the electrical charge and particle size distribution of starch nanocrystal suspensions. **Starch - Stärke**, v. 67, n. 3–4, p. 319–327, mar. 2015.

SADEGHI, Rohollah et al. Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. **Journal of Cereal Science,** v. 76, p. 122–130, jul. 2017.

SALARI, Joris W. O. et al. Deformation of the Water/Oil Interface during the Adsorption of Sterically Stabilized Particles. **Langmuir**, v. 30, n. 25, p. 7327–7333, 18 jul. 2014.

SANA, Sahr; BOODHOO, Kamelia; ZIVKOVIC, Vladimir. Production of starch nanoparticles through solvent-antisolvent precipitation in a spinning disc reactor. **Green Processing and Synthesis**, v. 8, n. 1, p. 507–515, 28 jan. 2019.

SANCHEZ DE LA CONCHA, Brenda B. et al. Acid hydrolysis of waxy starches with different granule size for nanocrystal production. **Journal of Cereal Science**, v. 79, p. 193–200, jan. 2018.

SHARMA, Vasudha; BHARDWAJ, Aastha. Scanning electron microscopy (SEM) in food quality evaluation. In: **Evaluation Technologies for Food Quality.** [S.l.]: Elsevier, 2019. p. 743–761.

SHI, Ai-min et al. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: Influence of various process parameters on particle size and stability. **Carbohydrate Polymers,** v. 83, n. 4, p. 1604–1610, 1 fev. 2011.

SIYAMAK, Samira; LAYCOCK, Bronwyn; LUCKMAN, Paul. Synthesis of starch graft-copolymers

via reactive extrusion: Process development and structural analysis. **Carbohydrate Polymers,** v. 227, p. 115066, jan. 2020.

SOARES, Ariana de Souza et al. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. **LWT**, v. 107, p. 164–170, jun. 2019.

SOE, May Thu et al. Thai glutinous rice starch modified by ball milling and its application as a mucoadhesive polymer. Carbohydrate Polymers, v. 232, p. 115812, mar. 2020.

SU, Qiong et al. Functionalized nano-starch prepared by surface-initiated atom transfer radical polymerization and quaternization. **Carbohydrate Polymers**, v. 229, p. 115390, fev. 2020.

SUN, Qingjie et al. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. **Carbohydrate Polymers**, v. 111, p. 133–138, out. 2014a.

SUN, Qingjie et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. **Food Chemistry**, v. 162, p. 223–228, nov. 2014b.

SUN, Yue et al. Advances in Starch-Based Nanocomposites for Functional Food Systems: Harnessing AI and Nuclear Magnetic Resonance Technologies for Tailored Stability and Bioactivity. **Foods**, v. 14, n. 5, p. 773, 24 fev. 2025.

THIRUMDAS, Rohit et al. Functional and rheological properties of cold plasma treated rice starch. **Carbohydrate Polymers,** v. 157, p. 1723–1731, fev. 2017.

VERRUCK, Silvani; PRUDENCIO, Elane Schwinden. Ultrassom na indústria de alimentos: aplicações no processamento e conservação. [S.l.]: Antonella Carvalho de Oliveira, 2018.

WANG, Hui et al. A Review on Patents of Starch Nanoparticles: Preparation, Applications, and Development. **Recent Patents on Food, Nutrition & Agriculture,** v. 9, n. 1, p. 23–30, 23 jul. 2018.

WANG, Xinge et al. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. **Carbohydrate Polymers**, v. 138, p. 192–200, mar. 2016.

WONGSAGONSUP, Rungtiwa et al. Modification of tapioca starch by non-chemical route using jet atmospheric argon plasma. **Carbohydrate Polymers**, v. 102, p. 790–798, fev. 2014.

WU, Jie; MA, Guang-Hui. Recent Studies of Pickering Emulsions: Particles Make the Difference. **Small**, v. 12, n. 34, p. 4633–4648, set. 2016.

XIAO, Huaxi et al. Preparation and characterization of broken-rice starch nanoparticles with different sizes. **International Journal of Biological Macromolecules**, v. 160, p. 437–445, out. 2020.

XIAO, Jie; LI, Yunqi; HUANG, Qingrong. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. **Trends in Food Science & Technology,** v. 55, p. 48–60, set. 2016.

XU, Yixiang et al. Morphological, Structural, and Thermal Properties of Starch Nanocrystals Affected by Different Botanic Origins. **Cereal Chemistry Journal**, v. 91, n. 4, p. 383–388, jul. 2014.

ZHANG, Binjia et al. Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. **Food Hydrocolloids**, v. 37, p. 69–76, jun. 2014.

ZHAO, Shuainan et al. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor. **Chemical Engineering Science**, v. 186, p. 122–134, ago. 2018.

ZHU, Fan. Encapsulation and delivery of food ingredients using starch based systems. **Food Chemistry**, v. 229, p. 542–552, ago. 2017.